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Abstract 
 
 
We develop and estimate a model of the Treasury futures contracts in relation to the 
parameters of the Nelson - Siegel model of the Treasury yield curve, and test the 
hypothesis that this model of the curve identifies the true, unobservable default-free 
discount function. We find that the four parameters of the NS model explain most of the 
variance in contract prices within the sample, which runs from 1982 to the August, 1996. 
But we also find compelling evidence against the null hypothesis. Specifically, we find 
that even holding the NS curve constant, the Treasury contracts are highly correlated with 
yields of individual Treasury notes and bonds.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 If we take the social discount function − the function which assigns to every 
future date the present value of a future dollar − as a starting point for bond valuation, 
then pricing of call free Treasury bonds and notes is a fairly straightforward application 
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of the theory. As long as we accept that all the promised cash flows will materialize as 
promised, the value of the bond is easily computed from the discount function. In theory, 
the prices of Treasury Strips should exactly trace out the discount function. This truth has 
enormous practical application because of the immense size of the outstanding Treasury 
debt, but it does not extend beyond Treasuries to any other security. To model and value 
any other security requires a model of how it is priced relative to Treasuries and to the 
Treasury yield curve.  
 
 The starting point, traditionally, for this type of analysis has been to spread the 
security off the yield curve and then to attempt to understand the dynamics of the spread. 
If the promised cash flows are certain, as in the case of a call free corporate bond, then 
the credibility of the promise to pay is the only possible reason why there is any spread. 
The simple spread calculation is a reasonably good way to quantify the extent of 
discounting for credit risk. Most so-called “fixed income” securities today, however, 
offer not a single pre-defined stream of cash flows, but promise instead some bundle of 
contingent claims. It is strictly speaking impossible to spread such securities off the yield 
curve, because there are no known cash flows to price. The approach which has been 
taken to date is a simple, heroic effort to bootstrap the conventional spread methodology. 
On the basis of some space-age mathematics, we replace the whole confusing distribution 
of future cash flows with one certainty equivalent stream. The pure spread of the security 
is, then, simply the conventional spread of the certainty equivalent stream. The full model 
of the asset, however, also includes the analytics which produced that stream from the 
actual definition of the contingent claims. I will not stop here to dwell on the 
shortcomings of these models, except to note that they all need a model of how the yield 
curve will evolve in the future, and the historical record is not at all reassuring about our 
ability to do that. 
 
 There is another approach which starts from an entirely different view of the 
problem which we are trying to solve. Everyone would agree that the task at hand is not 
to compute a yield spread from a fixed income security; yield spreads were only a means, 
not an end. The job is to understand how the value of the security correlates with the 
Treasury yield curve. The reason why we have not been able to take a more direct 
approach is that the yield curve has simply been too complicated to deal with. In theory, 
the curve is a continuum of numbers. We simply don’t know how to correlate it with 
anything; we don’t know how to correlate functions to each other. We need a concise 
parameterization of the curve which both captures the essential features of every 
observed curve and translates them into a small set of parameters which evolve over time. 
 
 Charles Nelson and Andrew Siegel [Nelson and Siegel] have offered one such 
parameterization which gets by with only four parameters: the Level, Slope, and 
Curvature of the Treasury spot curve, and a fourth parameter called Tau. The idea behind 
Tau is to allow the curve to have to distinct regimes, one of which applies out to a point 
in the proximate future − e.g., three years − and the other which applies from there to 
infinity. Tau is the date at which the transition occurs from one regime to the other. Thus 
Tau is measured in years, and typically assumes values between two and seven. The idea 
of a parameterization of the yield curve is that there is only one possible curve − I mean, 
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one possible actual curve in reality − which corresponds to any given foursome of 
parameters [Level, Slope, Curvature, Tau].  
 
 The model is invalidated to the extent that we actually observe different yield 
curves which correspond to a single set of these four parameters, and it is validated to the 
extent that whatever are the level, slope, curvature, and tau of the curve on a given day, 
the rest of the curve exactly fits the corresponding model curve. There are sure to be days 
when the yield curve has the same model representation, but that not all yields are exactly 
equal, at all maturities. It remains an open question, however, whether the difference 
between the curves should or would imply significant differences in the pricing of fixed 
income securities. It this article, we will look at one particular pricing problem − pricing 
the Treasury contracts which trade on the Chicago Board of Trade − to attempt 
empirically to determine how good a job the model does. The essence of the test is to 
estimate how much of the variance of prices, in this cases, prices of Treasury contracts, is 
explained by the four factors identified by the curve model, and to check whether the 
actual correlation works in a plausible fashion. 
 
 This is not the simplest or most direct test of the Nelson - Siegel model. The most 
direct test is to see how well it accounts for the prices of Treasury bonds and notes. Tests 
of that kind have been done and reported elsewhere. While simple and direct, however, 
this test is not necessarily the most revealing one, for the following reason. Treasury 
securities are priced on the social discount function, from which it follows that the actual 
Treasury yield curve at any point in time is a reasonable pricing benchmark for all fixed 
income securities. It remains an open question, however, if there is a model curve of 
some sort which actually better represents that social discount function than does a given 
observed yield curve. Here “better” has two distinct meanings: better in the sense that the 
modeled curve is a better prediction of future yields, and better in the sense that it better 
explains the whole universe of bond prices at the present time. 
 
 
Review of the Nelson - Siegel Model. 
 
 The Nelson -Siegel Model (henceforth NS) starts from the premise that the 
forward curve is a solution of a second order differential equation which has constant 
coefficients, i.e. 
                                                 °°                      ° 
 1. f(t) + b * f(t) + c * f(t) = D,  
 
where f(t) is the instantaneous forward rate at the maturity point to. One rationale for 
such a model is that yields are determined by two pieces of information: an estimate of 
the rate at which inflation will accelerate in the near term, and an attenuation rate at 
which this timely forecast reverts to a slow-moving long term forecast. In the general 
case, the solution of this equation for any given initial level of the curve is given by 
 
 2. f(t) = L + S1 * exp(-beta1 * t) + S2 * exp(-beta2 * t). 
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The f’s and betas are related to the parameters of the differential equation by 
 
  beta1 + beta2 = -b, and 
 3. 
  beta1 * beta2 = c.
 
The coefficients L, S1, and S2 are determined by the initial conditions: f(0) and the initial 
growth rate, df(0)/dt. One of the conditions is easy to state: the overnight rate f(0) is 
equal to the sum, L + S1 + S2. The initial slope and curvature of the forward curve are 
also simple linear combinations of L, S1, and S2, from which we can solve for the L and 
the S’s as functions of the initial conditions.  
 
 In general, the betas can be real or complex numbers, but if they are complex, 
then they are complex conjugate to each other. We can dismiss this possibility at the 
outset, because complex betas give rise a situation in which the forward curve oscillates 
within a fixed range forever. Since that kind of curve is not observed in reality, we can 
safely assume that if this model is to be of any value, the betas must be real numbers. 
They can be positive or negative, or if c is negative, one of each. Again, however, 
practical experience provides a guide. If the yield curve is going to flatten out, both of the 
tau’s have to be positive. Otherwise the curve rises forever at an accelerating rate. There 
is a special case of this model which arises when b2  =  4 * c. In that case the solution is 
 
 4. f(t) = L + S * exp(-t / tau) + C * t * exp(-t / tau). 
 
NS attempted to fit both equations 2 and 4 to actual forward curves. They concluded that 
the general solution, equation 2, has too many parameters and overfits the curve, and that 
the more parsimonious equation 4 is actually a better representation of empirical curves. 
 
 The parameters have an interesting interpretation in terms of the yield curve. 
Assuming that tau is positive, so that the curve eventually levels off, L is equal to the 
asymptotic forward rate, which is the interest rate “at infinity;” the rate which the curve is 
leveling off at. S is equal to the difference between the instantaneous spot rate, f(0), and 
the interest rate at infinity. I.e. 
 
  L  =  f(∞), 
 5. 
  S  =  f(0) − f(∞). 
 
The exact interpretation of C is not as intuitive, but C is related to how sharply the curve 
bows up or down relative to a simple exponential curve. One of the complications of 
interpreting C is that C depends upon the exponential parameter tau.  
 
 Tau admits of a simple intuitive interpretation also. It modifies the time scale 
itself, by converting nominal time, t, into absolute time, t / tau.  If tau is small, the curve 
very quickly (i.e. “quickly” in terms of nominal time) approaches its asymptotic value L. 
To take a single numerical example, if tau = .03, at the one year maturity point the curve 
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would already have settled in to the yield which would be reached at thirty-three years, if 
tau had been equal to 1. Such a curve would appear to be nearly flat, except perhaps for a 
gap at the front end. The size of the gap, if there is one, would essentially equal S. 
Conversely, if tau is high, the curve is determined by S and C over the range of maturities 
for which we actually have data, e.g. out to thirty years. If tau = 30, for instance, the 
whole curve we which we would actually observe would look like just the first year of a 
curve for which tau = 1.  
 
 One important implication of the difference between nominal time and absolute 
time scales is that when we try to fit this model to a yield curve, the value of tau will 
determine whether we are actually able to estimate all the parameters. If tau is small, we 
probably would not be able to estimate S and C with much accuracy, because only short 
term yields depend upon them to a significant degree. Conversely, if tau is large, it may 
not be possible to estimate L with much precision because over the range of available 
data the curve does not level off sufficiently to identify the asymptotic forward rate.1
 
 If we accept for the time being the thesis that the NS parameterization describes 
the true, unobserved social discount function, then its parameters would explain the 
pricing of Treasury futures. Before we proceed to the empirical implementation of this 
idea, however, we have to stop and consider the sources of measurement error. 
 
 
Fitting Errors of the Model. 
 
 The NS Model allows for two sorts of fitting errors which we need to account for 
as much as possible. They are errors which intervene between the prices of actual 
Treasury securities and the true social discount function, and errors which arise between 
the NS curve and the true discount function. A curve model is useful to the extent that the 
second type of error is small, and our empirical tests will shed some direct light on that 
matter. One such test is to ask how well the model prices actual Treasury securities, but 
this is actually a joint test of the absence of both types of fitting errors. Poor performance 
by the model curve can be the result of either poor performance of the model or of noisy 
Treasury yields.  
 
 What sorts of error does the bond market make in pricing Treasury securities? 
One kind of error is undoubtedly short run supply / demand imbalance at a single 
maturity point. There is the potential for an excess supply of a given maturity around the 
issue date of notes of that maturity. On the demand side, various kinds on institutions are 
observed to have narrow maturity preferences, and thus when they are active in the 
market they will tend to move yields at those maturities relative to the rest of the curve. 
                                                           
1 This heuristic insight can be made more precise in terms of the standard errors associated with maximum 
likelihood estimates of the coefficient parameters L, S, and C. The variance - covariance matrix of the 
sample estimates is equal to the negative of the expected value of the INVERSE of the Hessian matrix of 
the log-likelihood function. I.e. to get standard errors of the parameter estimates, one has to invert the 
matrix of second derivative of the log-likelihood function. As tau approaches either 0 or ∞ the Hessian 
matrix becomes singular. 
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One of the great attractions of a parsimonious model of the yield curve is precisely that it 
is comparatively insensitive to these sorts of security−specific forces. It is appropriate to 
filter them out because they primarily reflect decisions which are independent of the 
valuation issue which lies at the heart of a yield curve model. If the Treasury, or some 
city or corporation, needs money, it will borrow, without asking or much caring whether 
rates are perhaps out of line with rational expectations. They just need the money, and 
they are convinced that they can afford to pay the rate which is demanded of them. 
 
 There is no way of knowing how tightly observed Treasury yields should fit the 
true social discount function, or conversely of knowing how large a price impact these 
sorts of exogenous decisions commonly have. Consequently, we can not use the 
goodness of fit of the NS model as a basis of judging whether it is the true social discount 
function. Because of the addition of separate price observations − in this case, 
observations of the Treasury futures contracts − we do have another, independent test. 
 
 Our null hypothesis is that the NS model exactly coincides with the true discount 
function. The test of that hypothesis rests on the proposition that the true social discount 
function is the definitive pricing basis for all default-free discount factors, and therefore 
the definitive pricing basis for all fixed income securities. What this means in practice is 
that the true curve acts like a sufficient statistic. Given the curve, the prices of fixed 
income securities, or in our case, the pricing of Treasury futures contracts, should be 
independent of the prices of individual Treasury securities. The price of the Ten Year 
Note Contract, for instance, should be independent of the actual yield on ten year notes, 
holding constant the social discount function. The reason is that the basis between the 
actual note and the theoretical price dictated by the yield curve only reflects a pricing 
anomaly in the ten year note; the true curve cannot by definition have pricing anomalies. 
 
 If the NS Model correctly identifies the true curve, therefore, it embodies all 
pricing information germane to the Treasury Futures, and the prices or yield of actual 
Treasury securities will contain no further information about where the contract should 
be priced. In formal terms, if y(m) denotes the actual yield on a Treasury security and 
yN(m) denotes the yield at that maturity implied by the NS model, the partial derivative 
of any other price or yield with respect to y(m), holding yN(m) fixed, will be zero. 
 
 
 
Empirical Implementation: Specification. 
 
 The program we have laid out consists, roughly, of three distinct steps. The first is 
to estimate the parameters of the NS model over a sample of yield curves. I will defer a 
discussion of this step to the next section, which deals with data sources and treatment of 
the data. The second step starts from the assumption that the NS model captures the true 
yield curve parameters, by using this data to build an empirical model of the Treasury 
futures contracts. The third step is to implement the test of sufficiency outlined above. In 
practice, we do that by adding Treasury cash yields to the contract models. The 
coefficients of the cash yields are our test statistics. If they are all zero we can safely 
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conclude that the NS model has passed this test. If a disturbing number are significantly 
different from zero, we can reject the hypothesis that the NS curve identifies the true 
yield curve. The exact cutoff for what rates as disturbing is not precise, because 
obviously if we test enough cash yields, some of these will have high t-ratios. We need a 
joint test, in the spirit of a F−test of the joint significance of several coefficients. 
 
 The Price model of each Treasury contract has three parts, which correspond to 
the accepted analysis of determinants of futures (see [Burkhardt et. Al.]). One component 
is called “carry,” and arises from the difference between the current yield on the cheapest 
Treasury to deliver, on the one hand, and the yield on cash balances to be available on the 
delivery data of the contract. Other things being equal, the price of a contract is 
discounted relative to the price of cheapest-to-deliver. The owner of futures gives up the 
yield difference between the cheapest-to-deliver and the yield, generally a lower yield, on 
cash balances until he actually takes delivery of the bond. Carry is a common factor in all 
forward contracting, because the contract long earns interest on the cash balances he 
holds until the point of delivery, but sacrifices any current flows of valuables from the 
underlying commodity. In the case of Treasury futures, that flow of services is the 
accrual of coupon on whichever bond or note will actually be delivered. Our proxy for 
carry uses the yield difference between the Treasury cash yield at an appropriate maturity 
point − our proxy for the current yield of the cheapest-to-deliver − and the yield of the 
year bill. The yield on cash is close to some sort of term CD or commercial paper rate 
and not the year bill, but in practice these yields tend to be close. This yield spread is 
generally close to the accrual rate of carry, but for safety we have allowed for a constant 
spread, A, between the simple yield spread and the true rate at which carry accrues. The 
parameter A is simply added to the model as a parameter to estimate. This yield spread is 
the instantaneous rate of carry. carry over the term is therefore this spread times the 
length of the term. In practice, we assume that delivery will be made at the latest possible 
date, which is the last business day of the next contract month. For the Treasury futures 
contract at maturity m, then 
 
 6. Carry(m)  =  (y(m) − y(1) + A) * term + u1, where 
 
 7. Term  =  length of the period from today to the end of the next 
   contract month.  
 
u1 is a residual term which accounts for all errors in modeling the cost of carry, but in 
practice they are sure to be small. As defined, the coefficient of Carry will be negative, 
because the contract long has to be compensated for giving up y(m) and settling for y(1) 
− A instead. The coefficient of Carry is actually dictated by the model. When the contract 
and Carry are measured in the right dollar units, the coefficient of Carry has to be  −1. 
 
 The real complication associated with Treasury futures contracts arises from the 
fact that the long does not know which note or bond will be the delivered at the end of 
the contract delivery month. The contract short retains a sheaf of valuable delivery 
options, which derive their value when the cheapest bond to delivery changes. The 
underlying option is the option which the short holds to deliver any one of a number of 
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difference bonds, whose prices do not move be exactly equal dollar amounts. One 
immediate consequence of this optionality of the contracts is that the basis depends on 
the volatility of the yield curve over the remaining period until delivery. This is captured 
by an explanatory factor Volfactor, defined in terms of two factors, Term and the Implied 
Volatility of the bond contract. 
 
 8. Volfactor  =  Impvol * sqrt(term) 
 
 The carry and embedded options effects explain what amounts to an effective 
spread of the contract off the actual Treasury yield curve. The volatility factor is quite 
explicitly a spread, and is analogous to any other option spread for a callable bond. The 
only difference is that the call option embedded in a callable bond expires at the maturity 
of the bond. The option features of the contract expire much sooner, when the contract 
settles. The option embedded in Treasury contracts is accordingly much less valuable 
than a currently exercisable call option would be, because of the limited window of 
exercise, but in concept the two options are basically the same.  
 
 The curve dependence of a Treasury contract can be modeled directly by relating 
the contract price to the fitted curve. If the contract was a single, known Treasury bond, 
i.e. if the set of deliverable bonds had only one member, the curve model would take the 
very simple form of a Taylor expansion of price in terms of yield to maturity, viz. 
 
 9. P(ytm)  =  P(0)  −  Dur * ytm  +  .5*Conv * ytm2  +  ... 
 
Our model makes three modifications. First, we simply stop the expansion after the 
second order term and consign the rest of the expansion to the residual term. In so doing, 
we accept that the theoretical “residuals” are functions of the explanatory variable, yield, 
but since the residuals are small in magnitude, the resulting bias is insignificant. It 
follows that we should reject as misspecified any implementation which does not have a 
high R2 statistic. It turns out that this is no problem; empirical R2’s are on the order of 
.995. 
 
 A second modification is that we want to use not “yield to maturity,” but the NS 
model, as our explanatory variable. It is possible to compute the implied yield to maturity 
of a par bond at any maturity point directly from the NS parameters, but the computation 
is elaborate and results in a very complex, nonlinear model. It is, furthermore, quite 
unnecessary. The model we are estimating explains the price of a contract directly in 
terms of the NS model of the curve. We need not use the actual yield to maturity on the 
right hand side of equation 9; we can use any statistic of the NS model which is 
mathematically equivalent to the yield to maturity. Because it results in the simplest 
model, we choose to use the instantaneous forward rate corresponding to the duration of 
the cheapest to deliver bond. i.e. 
 
 10. m  =  Duration of the Cheapest to Deliver Bond, 
 
 11. f(m)  =  L  +  S * exp(-m / tau) + C * m/tau * exp(-m / tau), and 
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 12. P  =  P(0)  +  b1 * f(m)  +  b2 * f(m)2  +  u. 
 
The reason why m is the duration of the cheapest-to-deliver, rather than the maturity, is 
that the forward rate model is mathematically equivalent to a model of the spot rate with 
the same m (see Nelson and Siegel). The maturity parameter in this model is the maturity 
of a spot rate, i.e. the term to maturity of a zero coupon bond. In that case, however, it is 
also the duration of the instrument − a zero coupon bond − which is used to identify the 
spot rate. 
 
 There is one final modification, which goes directly to the heart of the delivery 
option embedded in a Treasury futures contract. The duration parameter “m” is itself a 
function of the level and shape of the yield curve. The set of deliverable bonds contains 
bonds which have a range of durations. As interest rates change, the prices of the 
deliverable bonds therefore change at different rates. The bond which lags is liable to 
become cheapest to deliver. When rates rise, for instance, long duration deliverables fall 
faster in price than the other deliverables do, and they thus tend to become cheapest to 
deliver. Thus, the variable m is a function of interest rates. We will simply take a linear 
approximation as our model of this relationship. In order to allow for effects of curve 
shape and level, however, we use three points on the curve. 
 
 13. m  =  a0  +  a1 * y5  +  a2 * y10  +  a3 * y30. 
 
where yT represents yield to maturity at maturity T. The behavior of the cheapest to 
deliver implies that m is an increasing function of the yield of the cheapest to deliver, 
which requires at the least the sum a1 + a2 + a3 must be positive. Some of the a’s may be 
negative, though. The actual pattern of signs depends on how the factor m depends on the 
shape of the curve. Is the coefficient of y5 is negative, for instance, it follows that m 
increases when the curve steepens. If the coefficient of y30 is also negative, m also 
increases when the curve becomes more curved. 
 
 This the complete model, expressing the price of a Treasury contract in terms of 
carry, implied volatility of interest rates, the four parameters of the NS model, and three 
Treasury yields. In theory, the yields are themselves functions of the NS parameters, but 
it would complicate the model needlessly to make this substitution. We will not be able 
to ignore it, however, when we use this model to estimate the partial derivatives of 
contract price P with respect to the NS parameters. At that point, we will have to 
remember to differentiate the y’s too. 
 
 
Empirical Implementation: Data. 
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 There is not a lot of choice when it comes to building a database for estimating 
this model.2 Data on the Treasury contracts first began to emerge with the initiation of 
trading of the Bond contract (“Bonds”) in 1977. Contracts on ten year notes (“Notes”), 
five year notes (“Five Years”) and two year notes (“Two Years”) have appeared at 
approximately five year intervals since then. The Two Year contract is still a fledgling 
with little liquidity at this time. Implied volatilities are estimated from bond options 
which first began to trade in the early 1980’s. Treasury yield curves, on the other hand, 
have been around for many decades. Prior to February, 1985, all long Treasury bonds 
were callable − which means of course that they were priced at some spread off the true 
yield curve − but since then all newly issued bonds have been free of embedded options. 
Even before that time, the value of the call option in a new issue long bond was small 
because the first call date was twenty-five years in the future. Thus, potentially, we have 
a full set of data which starts for Bonds and Notes in the early 1980’s, and for Five Years 
in the late 1980’s. 
 
 We do not have a full census of the universe of Treasury data, i.e. daily contracts 
and yield curves from the early 1980’s. We do have two drawings from the universe: 
month end data covering the whole period, and daily data which starts at the beginning of 
1990. Our database has an important limitation; our yield data is limited to the new issue, 
or “current,” Treasuries. For the monthly database we have yields at nine maturity points: 
1, 2, 3, 4, 5, 7, 10, 20, and 30 years.3 For the daily database, we have four maturities: 2, 5, 
10, and 30 years. Current Treasuries are not necessarily representative of the whole 
Treasury universe, because the currents are not perfect substitutes for seasoned bonds. 
The current bonds are in demand for hedging other fixed income positions, e.g. corporate 
bonds or mortgages, and depending on this demand they can be priced well below yields 
on comparable seasoned Treasuries. As a new Treasury seasons, its tradable float 
declines (in the parlance of the bond market, the bonds are “put away”). At that time the 
yield rises to offset the cost of diminishing liquidity. We thus expect current Treasuries to 
be priced at some negative spread to the whole Treasury universe. This fact need not 
invalidate this empirical study, however. To the extent that the true yield curve really is 
characterized by just a few parameters, the yields of current and seasoned bonds will be 
very highly correlated even if they are not precisely equal. 
Creation of the NS Model Curves. 
 
 The necessary first step to estimating the model is to obtain parameter estimates 
of the NS model at every data point, or in other words, to convert observations of 
individual yields into observations on the parameters. The full curve model has four 
parameters, including the factor called tau. It is an open question whether it is better − 
“better” in terms of statistical properties of robustness, consistency, and the like − to 
estimate the full model or to simply fix tau at 3 years and estimate a restricted, three 
parameter model. Since in the sample of monthly data we have nine points alone the 

                                                           
2We note in passing that the number of serious attempts to model the Treasury contracts could easily 
exceed the number of months of available data, although that is probably not the case today. 
3There has been no current twenty year bond since 1989. After that time, we use the nearest seasoned long 
bond. 
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curve, we were able on the monthly data to try both approaches and to compare the 
results. In applying the model to daily data, since we had only four yield points we 
concluded that it would be impractical to try to estimate all four curve parameters. Our 
implementation of the model on daily data, therefore, is for the restricted, three parameter 
model. 
 
 Before we could fit the NS model to yields, we had to derive data on forward 
rates from the given yields to maturity. Since we have only a few observations from each 
yield curve, we could not be too sophisticated about this. We used the simple boot-strap 
method to construct a series of forward yields which span the observed yields. The way 
this works can be illustrated by taking two adjacent maturities, m1 and m2, and 
corresponding yields, y(m1) and y(m2). Since these are the yields of par bonds, they must 
also be  equal to the coupons rates. The forward yield from m1 to m2 is simply the coupon 
rate, f, of a par bond which will be issued at m1, to mature at m2. The forward yield, f, is 
the one which would leave an investor indifferent between the constant coupon stream 
y(m2) out to m2 and the two-part stream which gives y(m1) out to m1 and f thereafter.  
 
 The curve model applies to exact, instantaneous forward rates, but the forwards 
we obtain are quoted for a maturity interval. As a reasonable approximation, we assumed 
that the forward yield between two maturities, m1 and m2, is equal to the instantaneous 
rate at the midpoint, (m1 + m2)/2. This converted our yield data into equivalent data on 
forward rates. For our sample of monthly data, the maturity points quoted above, 1, 2, 3, 
4, 5, 7, 10, 20, and 30 years, give rise to forward rates at the maturity points .5, 1.5, 2.5, 
3.5, 4.5, 6, 8.5, 15, and 25 years. The final step was to fit the NS model to this data. We 
used simple, unweighted least squares with nine observations, to estimate the 
unrestricted, four-parameter model and the restricted, three parameter version of the 
model. For the sample of daily data, the yields are maturities 2, 5, 10, and 30 years 
corresponds to forward rates at 1, 3.5, 7.5, and 20 years. As explained above, we 
estimated only the restricted model on this data set. The yield curve at time t is either a 
four-tuple (L(t), S(t), C(t), Tau(t)) or a triple (LR(t),SR(t),CR(t)), where the subscript R 
denotes the restricted model. 
 
Estimates of the Model on Monthly Data. 
 
 In this section I will rather briefly summarize the findings of one representative 
model of each of the three main contracts, bonds, notes, and five year notes. The model 
described above is not really a single, fixed model; it comes in several alternative 
versions. One difference is which contract we are modeling. The three maturity points 
give rise to very different parameter estimates. Another difference is whether we restrict 
the Tau factor to equal 3.0, as explained above, and a third difference is whether we use 
the simple linear specification outlined above, or use a log-linear specification. Our 
conclusion after considering all alternatives is that the log-linear, unrestricted model is as 
good as any version. We will accordingly focus attention on that specification here, 
leaving the full range of alternatives to an appendix. The exact specification for the bond 
contract is the following, where Contract(t) denotes the settlement price of the contract at 
t and yC denotes the Treasury yield corresponding to the notional maturity point of the 
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contract, i.e. five, ten, or thirty years. As complicated as this expression is, there are only 
ten parameters to be estimated: there are five b’s, four a’s, and the spread parameter A 
which appears in the model of carry. We estimated the parameters by means of the 
nonlinear least squares routine contained in the RATS statistical package. A table of 
parameter estimates follows. 
 
 14. Ln[Contract(t) − b1 [yC(t)−r1(t)] term(t) − b2 term(t) − b3 volfactor(t)]  =  b0 +  
 
      b4 * {L(t) + S(t) exp[(−a0 − a1 y5(t) −  a2  y10(t) − a3 y30(t)) / tau(t)] + C(t) * (−a0  −  
 
                                 a1  y5(t) − a2  y10(t) − a3 y30(t)) *  exp[(−a0 − a1 y5(t) − a2 y10(t) − a3 y30(t))/tau(t)]  / 
 
                                 tau(t)} + b5 * {L(t) + S(t) exp[(−a0 − a1 y5(t) − a2  y10(t) − a3 y30(t))/tau(t)] +  
 
                                 C(t) * (−a0 − a1  y5(t) − a2  y10(t) − a3 y30(t)) * exp[(−a0 − a1 y5(t) − a2 y10(t) −  
 
                                 a3 y30(t)) / tau(t)] / tau(t)}2 + u(t). 
 
 The summary statistics are generally very favorable for all three contracts. Most 
importantly, the R2 statistics are extremely high, as was mentioned previously. We will 
have to test directly whether individual Treasury yields are correlated with the regression 
residuals, which is the most direct test of the thesis of this model, but in any case, the 
model does not seem to lack much in terms of explanatory power with or without the 
addition of individual yields. Despite the high proportion of variance explained, the 
residual variances are still surprisingly high. In the case of the bond contract, the standard 
error of estimate is greater than 43 / 32nds.4 To put that in a profit and loss perspective, it 
implies that if the model on the right hand side really equals fair value, one third of the 
time a trader would have had an opportunity to make more than one full point in two 
months by trading the basis. Since the contract must converge to the yield curve at the 
time of delivery, and since in our sample the contract is two months from delivery, this 
interpretation of the standard error of estimate follows.  
 
 
 
 
 
Table 1. 
 
 Bond  Note   Five Yr. Note 
        b0 193.07 152.11 126.47 
 3.81 1.88 1.22 
    
        b1 4.97 3.61 −.53 
 .71 .65 0.5 

    

                                                           
4The contract between the high proportion of explained variance, on the one hand, and the large size of the 
residual variance is actually a sobering reminder of how volatile Treasury yields have been over this epoch. 
The range of prices of the Bond contract runs from about 70 to 122. Yields have ranged from more than 
14%, at the start of the estimation period (1982), to 5 3/4% in 1993. 
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        b2 −8.92 −6.16 0.76 
 1.92 1.27 1.09 

    

        b3 −331 −143 −.13 
 .06 .036 .064 

    

        b4 −14.51 −7.37 −2.84 
 .76 .37 .32 

    

        b5 .375 .120 −.052 
 .037 .018 .022 

    

        a0 2.782 1.86 −.24 
 1.46 .65 .33 

    

        a1 2.027 0.014 −.04 
 .79 .32 .12 

    

        a2 −3.947 −.40 −.16 
 1.42 .56 .25 

    

        a3 2.28 0.54 0.45 
 .79 .29 .14 

    

    
   S.E.E. 1.34 0.70 0.29 
    
       R2 . 994 .996 .997 
    
Estimation 
  Period 

10 / 82 − 8 / 96 10 / 82 − 8 / 96 5 / 88 − 8 / 96 

    d.f.   154 154 87 
    
   D.W. 1.34 1.31 1.50 
    

 
Notes:    t-ratios appear beneath the corresponding parameter estimates. 
 There is one observation per month, which is based on the front contract. Each contract, therefore 
appears three times in the data set, with three, two, and finally one month to remaining to deliver. All 
interest rates are quoted in per cent, e.g. 5.7%. Term to delivery is quoted in fractions of one year, i.e. term 
can be either .25, .167, or .083.  
 All parameters of the Bond model are significant at all conventional levels. 
 
 
 We tested directly for convergence by estimating equation 14 with weights on the 
residuals. Convergence implies that the variance of model residuals is an increasing 
function of the term to delivery. We estimated equation 14 in a form which allows the 
residual variance to be proportional to term. Results of the version are reported in the 
appendix. In general, there is little to choose between, but the R2 statistics of the 
weighted model are slightly higher than those reported above, consistent with the 
hypothesis of convergence. Interestingly, the Durbin − Watson statistics of the weighted 
model indicate that the residuals are less positively autocorrelated, which may be 
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evidence that a lot of the autocorrelation comes from pairs of successive observations 
corresponding to the months which are three and two months from the delivery date. It is 
quite possible that the comparatively large residual errors at these times make it more 
difficult for the market to recognize and correct mispricing of the contracts. 
 
 The coefficient b3, which is significant in all equations, relates to the pricing of 
the implicit delivery options in each contract. The higher that volatility of Treasury 
yields, the more valuable the delivery option is. Since the option belongs to the short 
position − to the trader who is long the actual Treasury securities and short futures 
against them − higher volatility enhances his position by diminishing the value of the 
contract, other things being equal. The estimates presented above imply that to increase 
implied volatility by one percentage point with one month remaining to expiration lowers 
the Bond contract (and raises the Basis) by about  3 / 32nds. With two months to 
delivery, the effect is about 4.5 / 32nds, and at three months it is 5.5 / 32nds.  
 
 The b4 and b5 parameters are related to the duration and convexity of the contracts 
(b4 is actually the negative of duration, as duration is usually defined). The duration 
estimates are plausible, though not conventional. The effective duration of the Bond 
contract is usually estimated to be around 10.5 years. Our estimate depends upon the 
level of the curve, L. At L equal to 8%, our estimate based on the “b” coefficients would 
be 8.5 years. The duration estimates for the Note and the Five year note are much closer 
to conventional estimates, although most models produce a duration a little less than 6 
years for the Note, while we get 5.5 years5. Our duration estimate for the Five year is 
almost precisely in line; we get 3.7 years where 3.7 years is more usual. It is not so easy 
to compare our estimates of convexity with conventional ones, because of large structural 
differences between our model and conventional models. They approach the modeling 
task from a theoretical starting point, based on direct modeling of the embedded delivery 
options, whereas we have taken an empirical tack. We will return to this issue in a 
moment. For the present, we note that at least the Bond and Note contracts appear to have 
positive convexity, as they should in our model. Our model recognizes the optionality of 
Treasury contracts directly, by incorporating a (simple linear) model of the duration of 
the Cheapest to Deliver bond or note. The “b” coefficients therefore are estimates 
conditional on holding the Cheapest to Deliver constant. They should thus correspond to 
the duration and convexity of a non-call bond. Considered in this light, the model of the 
Five Year Note is less successful, because the convexity estimate is negative, implying 
that we have not fully accounted for the optionality of the contract. In practice, however, 
the convexity of a non-call five year note is almost zero, so sampling error could very 
easily change the apparent sign of the parameter. While it is a negative number, our 
estimate of the convexity of the Five Year Note contract is almost zero. 
 
 

                                                           
5 Duration is equal to −b4 − 2 b5 L. For L equal to 8%, this gives  
  Bond duration  =  14.5 − 2 * .375 * 8  =  8.5 
  Note duration  =  7.4 − 2 * .12 * 8  =  5.5 
  Five Year Note duration  =  2.84  +  2 * .052 * 8  =  3.7 
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The Model of Cheapest to Deliver. 
 
 While the “b” coefficients are in units of duration and convexity, they are not the 
correct estimates implied by our model, because they are estimated conditional on 
holding constant the Cheapest to Deliver bond. The true, unconditional estimates also 
involve the “a” coefficients and the NS model. We will limit our discussion here to the 
case of the Bond contract, but the analysis is easily extended to the other two contracts. 
The model of Cheapest to deliver is summed up by equation 13: 
 
 13. m  =  a0  +  a1 * y5  +  a2 * y10  +  a3 * y30, 
 
where m is the duration of the Cheapest to Deliver. The delivery option enters this 
relationship through the dependence of the y’s on the NS parameters. The y’s we have 
used are all yields to maturity, which complicates their relationship to the NS parameters, 
but one important case is simple. As the NS model is written, the level factor, L, enters 
all yields linearly; any X basis point shift in L simply shifts all yields by the same X basis 
points. Bond duration, moreover, is always equal to the sensitivity of price with respect 
to this factor, i.e. its sensitivity with respect to a parallel shift of the curve. Thus the 
derivative of m with respect to L is always equal to the sum of the a1, a2, and a3, and this 
is precisely the derivative we need to adjust the duration of the contract for optionality. 
How could we be so lucky!  
 
 15. dm / dL  =  a1 + a2 + a3  =  .36 years 
 
Stated in words, a one percentage point increase in the level of the curve lengthens the 
duration of the Cheapest to Deliver bond by .36 years. We can convert this estimate 
roughly into maturity terms. The deliverable bonds have maturities between fifteen and 
thirty years, though in practice the range is from fifteen to twenty-five years, because the 
newest long bonds are almost always very rich. At a yield of 8%, a fifteen year par bond 
has a duration of 8.6 years, and a twenty-five year par bond has a duration of 10.7 years. 
According to our estimates, it would require roughly a 600 basis point shift in yields, 
from say 5% to 11%, to cause the Cheapest to Deliver to extend by two years of duration. 
These calculations are admittedly crude, because among other things they ignore the 
convexity of the individual deliverable bonds. The twenty-five year bond that I used, 
having an 8% coupon and a duration 10.7 years when yields were at 8%, would have a 
much smaller duration at 11%.6 Nonetheless, the estimate is not implausible. 
 
 We can now obtain an unconditional, mutatis mutandis estimate of effective 
duration. For simplification, let X denote the forward rate f(m).  
 
 16. d ln(Contract) / dL  =  b4 dX/dL  +  2 b5 X dX/dL, where 
 
 17. dX / dL  =  1 − {(S − C) exp(−m / tau) / tau}dm/dL   
 

                                                           
6 At a yield of 11%, its duration is about 8.7 years. 
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   − {C m exp(−m / tau) / (tau2)} dm/dL. 
 
In order to evaluate this expression we would need values of the NS parameters. From 
them we would calculate the yields which determine m, and would also calculate f(m). 
These would then give us the duration estimate. Without carrying our these calculations, 
we can obtain important qualitative information directly from the general formula. Most 
importantly, when the curve is positive, S is negative, and in this case, the derivative in 
equation 17 is larger than 1.0. How much larger depends upon dm/dL. The delivery 
option therefore causes the contract to have a higher effective duration than it would if m 
did not depend on L. The size of the difference, moreover, increases linearly with the 
sensitivity factor, dm/dL.  
 
 It is interesting to observe, however, that if the curve is inverted, i.e. if S is 
positive, and C is small in absolute value, the effect could work the other way. It is 
possible for dX/dL to be less than 1.0 for some inverted curves. In the same vein, we note 
that when the curve is flat, the delivery options have no effect on the effective duration of 
the contract. This is the case in which S and C are both zero, or equivalently, tau is zero. 
In that case, dX/dL is always exactly equal to 1.0, and the unconditional duration of the 
contract is equal to its conditional duration based on the b’s alone. 
 
 Curve Effects. 
 
This summarizes the relationship between the effective, or unconditional duration of a 
contract and its conditional duration. The model of Cheapest to Deliver also exhibits 
yield curve dependencies. One common property of the models, for all contracts, is the 
duration of the Cheapest to Deliver is an increasing function of the slope of the curve. In 
all models, the coefficient of the bond yield, y30, is positive and the coefficient of the ten 
year note, y10, is negative. Thus other things being equal, all of these contracts lengthen 
out when the curve steepens and shorten up when it flattens or inverts. For the bond 
contract, the most dramatic curve effect arises when the curve “bows out,” in the sense 
that y10 rises relative to y5 and y30. This causes the Cheapest to Deliver to shorten up, 
and thus causes the Bond contract itself to shorten up. 
 
 This concludes out discussion of the behavior of the models themselves. We turn 
now to the test, which we outlined above, of the hypothesis that the NS curve embodies 
all relevant information about the True yield curve. 
 
Test of the NS Yield Curve Model. 
 
 We can test, at least in a preliminary way, the hypothesis that the NS Model 
identifies the true, unobserved Treasury yield curve. As explained previously, the basis 
for the test is the observation that if the NS Model identifies the true curve, all fixed 
income instruments will be priced off the curve generated by the model, and that any 
pricing errors will be security-specific. The test is to add Treasury yields to the model 
developed in the preceding sections. Since under the null hypothesis any mispricings of 
the Treasury futures contracts are specific to the contracts, they should not be correlated 
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to yields. Thus the NS Model should serve as a sufficient statistic which embodies all 
relevant information about the Treasury curve. 
 
 While the premise of this test is quite clear and compelling, the actual 
implementation requires judgment. First of all, we only have eight key Treasury yields in 
the monthly data, and four yields in the daily data. While in principle we could simply 
add all the yield data we have to each model, it is obvious in advance that the resulting 
collinearity would make the test statistics vacuous. None of the Treasury yields would be 
significant, and we would be unable to reject the null hypothesis. If the test is to be 
worthwhile, we have to select a few key Treasury yields on which to base a test. Since 
we have already introduced the yields at five, ten, and thirty years directly into the model, 
these maturity points do not seem to be an appropriate choice. We have chosen to use 
three maturity points which seemingly lie in between the maturity points of the contracts. 
Thus, we use a test based on adding three yields, y3, y7, and y20, to the model. 
where yk denotes either y3, y7 or y20. 
 
 Representative empirical results of this test are summarized in Table 2. They are 
absolutely overwhelming. Each of the three Treasury yields is highly correlated with all 
three Treasury contracts in most cases. A representative set of test statistics appears in the 
 17. Ln(Contract(t) − b1 [yC(t)−r1(t)] term(t) − b2 term(t) − b3 volfactor(t))  =  b0 +  
 
      b4 * {L(t) + S(t) exp[(−a0 − a1 y5(t) −  a2  y10(t) − a3 y30(t)) / tau(t)] + C(t) * (−a0  −  
 
                                 a1  y5(t) − a2  y10(t) − a3 y30(t)) *  exp[(−a0 − a1 y5(t) − a2 y10(t) − a3 y30(t))/tau(t)]  / 
 
                                 tau(t)} + b5 * {L(t) + S(t) exp[(−a0 − a1 y5(t) − a2  y10(t) − a3 y30(t))/tau(t)] +  
 
                                 C(t) * (−a0 − a1  y5(t) − a2  y10(t) − a3 y30(t)) * exp[(−a0 − a1 y5(t) − a2 y10(t) −  
 
                                 a3 y30(t)) / tau(t)] / tau(t)}2  + b6 yk(t) + u(t), 
 
following table; a fuller set appears in the appendix. The table reports coefficients, 
standard errors, and t-ratios of these three yields across six different models. All models 
have the form of equation 17, which is the same as equation 14 with the addition of a 
linear term which contains one of the three Treasury yields we are using for this test. We 
report the results of six versions of this model, i.e. two versions for each of the three 
Treasury contracts. One version corresponds to the model reported in Table 1. The other 
version is functionally identical to this, but we have weighted the residuals to allow for 
heteroscedasticity as a function of the term to delivery; the weighting factor is simply one 
over the square root of “term.” As was mentioned above, the weighted equations have 
slightly higher R2 statistics than do the unweighted ones, but in reality all the R2’s are 
exceptionally close to unity. 
 
 All of the test statistics are highly significant. The smallest of the t-ratios is 
almost 6 in absolute value. All of the estimated coefficients have the appropriate − 
negative − sign. Holding the NS model fixed, the partial correlation between each yield, 
on the one hand, and each contract is negative. It follows also that the residuals from the 
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three contract models in equation 14 are cross correlated, because of course they are all 
correlated with the three Treasury yields. This also violates the null hypothesis, though it 
is not really independent evidence. The null hypothesis explained the residuals of any 
curve model as security−specific or contract−specific mispricing which results from short 
term supply / demand imbalance. The high degree or positive cross correlation between 
model residuals implies, quite obviously, that the residuals are not specific to a single 
contract. They cut across all of them. The fact of cross correlation implies that the model 
in equation 14 omits important systematic factors, systematic in the sense that they 
contribute to the pricing of a variety of fixed income objects. We have to speculate 
whether these omitted factors would also have a significant effect on pricing of other 
securities, e.g. mortgage securities, corporate bonds, or fixed income swaps. 
 
 We have included standard errors for the unweighted equations in Table 2, in 
order to give some indication of how much the fit has improved by the addition of the 
Treasury yields. Using the NS model only, the standard error of the bond model was 
about 1 1/3 points, which is a huge mispricing. Depending on which Treasury yield one 
adds to the equation, this is reduced to about .9 points or less. While a mispricing of this 
magnitude still seems to be very large, it is obviously a great improvement. For reference, 
given the effective duration of about 10 years for the bond contract, a pricing error of 
9/10 of a point  amounts to about a 90 basis point spread over the Treasury curve. 
 
 The statistical results which are summarized in the table provide a source of 
confirmation of the test methodology, by way of the comparative power of the different 
maturity effects. The twenty year bond has the highest partial correlation with the bond 
contract, the seven year note has the highest partial correlation with the note contract, and 
the three year note has the highest partial correlation with the five year note. Since we 
wish to interpret our results as implying that the contracts are correlated with individual 
Treasuries, even after holding the NS curve fixed, it is gratifying that the in each case the 
most urgent addition to the model − the largest partial correlation − is one which is the 
most closely related to the actual deliverable set of bonds or notes. 
 
 This finding, that each contract is correlated with the Treasuries of nearest 
maturity, is nonetheless somewhat disturbing. Our hope at the outset of this study was to 
prove the effectiveness of a parsimonious model of the yield curve, by showing that it 
could capture most, if not all, of the systematic curve risk which is present in the 
Treasury futures contracts. From this point of view, even if the four factor NS model had 
proved to 
 
Table 2. 
 
 y3 y7 y20 
Bond    

    

Unweighted -.029 -.05 -.065 
 .002 .003 .003 

 -13.4 -18.3 -21.2 
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SEE .92 .90 .70 

    

    

Weighted -029 -.051 -066 
 .002 .001 .29 

 -15.3 -21.0 -22.9 

    
    

Note    

    
Unweighted -.026 -.06 -.062 

 .0014 .0015 .0019 

 -35.7 -38.1 -32.9 

SEE .45 .49 .73 

    

    

Weighted -.027 -.051 -.037 
 .0012 .0014 .0028 

 -22.7 -35.7 -13.3 

    

    
Five Year Note    

    

Unweighted -.025 -.021 -.013 
 .0013 .0021 .0019 

 -18.3 -10.1 -6.9 

SEE .22 .21 .24 
    
    

Weighted -.024 -02 -.012 
 .0015 .002 .002 

 -15.6 -9.9 -5.9 

    
 
Notes: Estimated coefficients are shown with their standard errors and implied t-ratios. All coefficients are highly 
significant, far exceeding conventional significance levels. For the weighted equations, the standard error of estimate is 
proportional to the weighting factor, which is the square root of TERM. The standard error of a contract which has two 
months to delivery are quite comparable to the standard errors of the unweighted equations. 
 
be not entirely successful − even if it is a bit too parsimonious − we would be satisfied to 
find evidence that another factor is needed. The statistics presented in Table 2 suggest, 
however, that for theoretical completeness we would need at least three additional 
factors. While a seven factor model of the curve might be made analytically tractable, it 
would be hard to describe it as parsimonious. 
 
 
Conclusion. 
 
 We have developed and estimated a set of models of the Treasury futures 
contracts which attempts to use the NS model as a proxy for the entire yield curve. In 
some important respects the results are encouraging. First of all, it was possible to define 
a model which accounts for the optionality of the contracts which comes from the various 
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delivery options. The way we did this was to take advantage of the fact that the maturity 
point corresponding to a given yield is a parameter of the NS model. Since the principal 
delivery option, the so-called quality option, is an option on the maturity of the cheapest 
to deliver bond, we were able to embed a simple model of the quality option in the NS 
curve model. Empirically, the resulting option model was successful in capturing the 
effective duration and convexity of the futures contracts. 
 
 Our results are encouraging also because we find that the contracts are very 
highly correlated with the model. We base this conclusion on the statistics reported in 
Table 1, which show that all the important factors are highly significant, and that in total 
our statistical model explains almost all of the sample variance of each contract. From the 
monthly data reported there, we typically obtain R2 statistics in the neighborhood of 
99.5%. 
 
 Nonetheless, we also found that the part which remains to be explained is large 
relative to the pricing of futures contracts relative to a measure of fundamental value. The 
standard deviation of the residuals from the model of the bond contract, for instance, 
amounts to much more than one point. If our statistical model was exactly equal to the 
fair value of the bond contract, it would say that the contract is frequently mispriced by 
one point (i.e. $1000 per contract) or more by the futures market. It is hard to believe that 
arbitrage opportunities of this magnitude are available in bond futures, although it is not 
impossible to believe it. 
 
 As a test of the validity of out model, and in effect as a test of the validity of the 
NS model, we tested the randomness of the model residuals, and found very compelling 
evidence that they are not random. The residuals from our model of each contract − 
bonds, ten year notes, and five year notes − are highly correlated with yields of individual 
Treasuries even though those yields are already reflected in the parameters of the NS 
model. This led us to reject the proposition that the four parameters of the NS model 
incorporate all of the systematic behavior of the Treasury yield curve. And on closer 
inspection, we uncovered some evidence that there is no simple fifth factor which 
accounts for all the missing information. 
 
 We can readily relate these results to a familiar and highly plausible theory of the 
yield curve, the one which recognizes that both issuers and buyers of bonds have 
preferred maturity (or duration) niches. The implication of this theory is that “the” bond 
market is really more like a shopping mall rather than a single retail outlet. For any given 
player in the market, bonds are not perfect substitutes. They can be induced to depart 
from their preferred niche when it is sufficiently costly to cling to it. In the buyers’ case, 
this occurs when the yield offered is low enough compared with neighboring maturities. 
Different points along the curve can then move in different directions, or at different 
speeds, depending on the momentary balance of supply and demand at that points, and 
depending on the cross elasticities of supply and demand between different maturity 
points. The correct number of explanatory factors would necessarily equal the number of 
(relatively) independent niches. 
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 If the number of niches was small, e.g. two, this theory would have little 
predictive power. It would account for gross changes in the yield curve, like inversions, 
but many competing theories can give rise to inversions. The theory of preferred niches is 
distinctly different from other theories when the number of niches is large. Our empirical 
results imply that while a model which provides for four niches does a very serviceable 
job of explaining the pricing of Treasury futures contracts, more niches, perhaps a lot 
more, are needed to explain all the systematic behavior of the contracts. 
 
 Before we throw in the towel on the NS curve model, we would want to replicate 
this research, but applying it to other fixed income securities. Mortgage-backed bonds are 
a promising place to start. How much of the systematic behavior of mortgage-backed 
bonds can be accounted for by the parameters of the NS curve? The hardest part about 
such a model will be modeling the prepayment option. The rewards of having such a 
model will more than outweigh the discomforts of developing and estimating it. 
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